
In step 2 in the box, note that part (B) 
is the dual of part (A), and conse­
quently, both must have the same 
optimal value (Theorem 1, Section 
6-3). In the next section, using the 
simplex method and properties of the 
dual, we will see that solving part (B) 
will automatically produce the solu­
tion for part (A). In this section we 
restrict our attention to the geomet­
ric approach; hence, we must solve 
each part as a separate problem. 
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Given the nonstrictly determined matrix game 

to find P* = [p1 p2], Q * = [:J and v, proceed as follows: 

1. If M is not a positive matrix (one with all entries positive), convert it into a 
positive matrix M1 by adding a suitable positive constant k to each element. 
Let M1, the new positive matrix, be represented as follows: 

e== +k 

h=d+k 

This new matrix game, M1o has the same optimal strategies P* and Q* as M. However, 
if v1 is the value of the game M1o then 

v=v1 -k 

is the value of the original game M. 

2. Set up the two corresponding linear programming problems: 

(A) Minimize y = xl + x2 (B) Maximize Y = Z1 + Z2 

subject to ex1 + gx2 2: 1 subject to ez1 + !z2 :5 1 
fx1 + hx2 2: 1 gz1 + hz2 :5 1 

x1, x 2 2: 0 Z1, Z2 2: 0 

3. Solve each linear programming problem geometrically. 

4. Use the solutions in step 3 to find the value v1 for game M 1 and the optimal 
strategies and value v for the original game M: 

1 1 
vl=-= or 

y x1 + x2 

v=v1 -k 

5. A further check of the solution is provided by showing that 

Solving 2 X 2 Matrix Games Using Geometric Methods Solve the fol­
lowing matrix game using geometric methods to solve the corresponding linear pro­
gramming problems (see Section 5-3): 

M= [
-2 

1 

l. Convert Minto a positive matrix (one with all entries positive) by adding 4 
to each payoff. We denote the modified matrix by M1: 

Excerpted from R. A. Barnett, M. R. Ziegler, and K. E. Byleen, Finite Mathematics for Business, Economics, Life Sciences, and Social 
Sciences, 11th ed. (Upper Saddle River, NJ: Pearson / Prentice Hall, 2008), 417–418.
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2, Set up the two corresponding linear programming problems: 

(A) Minimize y = x1 + x2 (B) Maximize Y = Z1 + Z2 

subject to 2x1 + Sx2 =:: 1 subject to 2z1 + 8z2 ::s; 1 

8x1 + x 2 =:: 1 Sz1 + Z2 ::s; 1 

Xi> x 2 ;::::: 0 Z1> Z2;::::: 0 

3. Solve each linear programming problem geometrically: 

Xz 

1.0 

0.5 

Feasible 
region 

0.25 

Theorems 1 and 2 in Section 5-3 imply that each problem has a solution that must 
occur at a corner point. 

(A) 
Comer Minimize 

(B) 
Corner Maximize 

Points y=Xt+Xz Points y = Zt + Zz 

(0,1) 1 
~0)~~~~~~~0~-~ 

('- 3 i 19>19) 19 

(~, 0) 1 
2 

Min y occurs at 
2 d 3 x1 = 19 an x2 = 19 

(O,i) l 
(~,fg) 

(~.0) 

Max y occurs at 

5 
i9 
1 
5 

7 d 3 Z1 = 38 an Z2 = 38 

4. Use the solutions in step 3 to find the value v1 for the game M1 and the 
optimal strategies and value v for the original game M: 

1 1 19 1 1 19 
(A) v1 = = 2 3 = - (B) v1 = 7 3 = -

~+~ 19+19 5 ~+~ 38+38 5 

19 7 7 
q1 = V1Z1 = 5'38 = iO 

19 3 3 19 3 3 
P2 = v1x2 = 5'19 = 5 q2 = V1Z2 = 5'38 = iO 

Note: v1 found in part (A) should always be the same as v1 found in part (B). 

Optimal strategies are the same for both games M and M1. Thus, 

P· ~ [p, 1'21 ~ [1 ~ J Q· ~ [::l ~ m 
and the value of the original game is 

v = v1 - k = !f - 4 = -~ 

.5. A further check of the solution is provided by showing that 

P* MQ* = v See Theorc:m 3, S:.;ction 10-2. 

This check is left to the reader. 

Solve the following matrix game using geometric linear programming methods: 

M = [ -~ -~] 

-
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